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Abstract 
The Real-time Control System (RCS) Methodology has 
evolved over a number of years as a technique to capture 
task knowledge and organize it in a framework conducive 
to implementation in computer control systems.  The 
fundamental premise of this methodology is that the present 
state of the task activities sets the context that identifies the 
requirements for all of the support processing.   In 
particular, the task context at any time determines what is to 
be sensed in the world, what world model states are to be 
evaluated, which situations are to be analyzed, what plans 
should be invoked, and which behavior generation 
knowledge is to be accessed. 

This results in a methodology that concentrates first and 
foremost on the task definition. It starts with the definition 
of the task knowledge in the form of a decision tree that 
clearly represents the branching of tasks into layers of 
simpler and simpler subtask sequences.  This task 
decomposition framework is then used to guide the search 
for and to emplace all of the additional knowledge. 

This paper explores this process in some detail, showing 
how this knowledge is represented in a task context-
sensitive relationship that supports the very complex real-
time processing the computer control systems will have to 
do.   

 
Background 

An RCS system models complex real-time control as three 
major processing components (figure1):  

1) sensory processing to measure, recognize, and 
classify entities and events of task interest in the 
environment;  

2) internal world model processing that represents 
and derives world states, situations, and 
evaluations in a task context manner; and  

3) behavior generation processing that reasons from 
this world model, selects plans, and makes value 
judgments to decide on the next appropriate 
output action to accomplish the goal tasks.   

These three components work together, receiving a goal 
task, breaking it down into simpler subtasks, determining 
what has to be known in the internal world model to 
decide on the next course of action, and alerting the 
sensory processing as to what internal world objects have 
to have their states updated by new sensory readings.  All 
together, this produces task-directed, sensory-interactive, 

adaptive, stable, real-time accomplishment of the input 
goal.  

A large number of complex real-time control systems have 
been built at the National Institute of Standards and 
Technology (NIST) and other research organizations using  
the NIST defined Real-time Control System (RCS, now 
referred to as 4D/RCS) design methodology and reference 
architecture (Albus and Meystel 2001).  These systems have 
as their backbone a hierarchical organization of agent control 
modules, each of which does a partial task decomposition of 
its input goal task, and outputs simpler subtask goals to the 
next lower subordinate agent control module.  Each of these 
agent control modules is made up of the three major 
processing components of sensory processing, world 
modeling, and behavior generation.  Each agent control 
module is concerned with just its own level of responsibility 
in the decomposition of the task. 

This RCS methodology has been applied over the past 
decade to the autonomous intelligent control of unmanned 
ground vehicles (Albus et al. 2002).  This paper will describe 
the RCS methodology in its application to the task of 
autonomous on-road driving to illustrate its approach to 
“mining” and representing task knowledge for control system 
implementation. 

 
RCS Methodology Summary 

The RCS methodology concentrates on the task 
decomposition as the primary means of understanding the 
knowledge required for intelligent control.  This approach 
begins with the knowledge “mining” activities to retrieve 
knowledge from subject matter experts (SMEs).  The 
gathering and formatting of this knowledge can be 
summarized in six steps (figure 2), each of which follows 
from the knowledge uncovered by the previous steps:  

1) The first step involves an intensive analysis of 
domain knowledge from manuals and SMEs, 
especially using scenarios of particular subtask 
operations.  The output of the effort is a structuring 
of this knowledge into a task decision tree form of 
simpler and simpler commands (actions/verbs) at 
simpler and simpler levels of task description. 
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Figure 1.  The basic internal structure of a 4D/RCS control loop.   Sensory processing performs the functions of windowing, 
grouping, computation, estimation, and classification on input from sensors.  World modeling maintains knowledge in the 
form of images, maps, entities, and events with states, attributes, and values.  Value judgment provides criteria for decision 
making.  Behavior generation is responsible for planning and execution of behaviors. 
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Figure 2.  The six steps of the RCS methodology approach to knowledge acquisition and representation.



2) This step defines the hierarchical organization of 
agent control modules that will execute these layers 
of commands in such a manner as to reasonably 
accomplish the tasks.  This is the same as coming up 
with a business or military organizational structure 
of agent control modules (people, soldiers) to 
accomplish the desired tasks.  This step forces a 
more formal structuring of all of the subtask 
activities as well as defining the execution structure. 

3) This step clarifies the processing of each agent’s 
input command through the use of rules to identify 
all of the task branching conditions with their 
corresponding output commands. Each of these 
command decompositions at each agent control 
module will be represented in the form of a state-
table of ordered production rules (which is an 
implementation of an extended finite state machine 
(FSM)).  The sequence of simpler output commands 
required to accomplish the input command and the 
named situations (branching conditions) that 
transition the state-table to the next output command 
are the primary knowledge represented in this step. 

4) In this step, the above named situations that are the 
task branching conditions are defined in great detail 
in terms of their dependencies on world and task 
states.  This step attempts to define the detailed 
precursor states of the world that cause a particular 
situation to be true.  

5) In this step, we identify and name all of the objects 
and entities together with their particular features 
and attributes that are relevant to defining the above 
world states and situations. 

6) The last step is to use the context of the particular 
task activities to establish the distances and, 
therefore, the resolutions at which the above objects 
and entities must be measured and recognized by 
the sensory processing component.  This step 
establishes a set of requirements and/or 
specifications for the sensor system at the level of 
each separate subtask activity.  

We will now cover these six steps in detail using the on-
road driving example.   

 
Step 1 – Task Decomposition Design 

The first step is to gather as much task related knowledge as 
possible with the goal of defining a set of commands that 
incorporate all of the activities at all levels of detail.  For on-
road driving this knowledge source would include driving 
manuals, state and federal driving codes, manuals on traffic 
control devices and detailed scenario narratives by SMEs of 
large numbers of different driving experiences. 

 Scenarios and examples are gone over in an attempt to 
come up with the names of commands that describe the 

activities at finer and finer resolutions of detail.  Figure 3 
provides an example.  The high level goal of “Goto 
destination” (such as “go to post office”) is broken down into 
a set of simpler commands – “GoOnRoad-name”, “TurnLeft 
Onto-name” (MapQuest-like commands).  At the next level 
down, these commands are broken down to simpler 
commands such as “Drive On Two Lane Road”, “Pass 
Vehicle In Front” and these are then decomposed to yet 
simpler commands such as “FollowLane”, 
ChangeToLeftLane”,etc 

Four very important things are being done with the 
knowledge in this step.  

1) The first is the discovery and naming of simpler 
component subtasks that go into making up the 
more complex tasks.   

2) The second is that for each of these component 
subtasks, we are defining a subtask command. 

3) The third is the understanding of the coordination of 
subtask activities that the task involves. This is 
identified by the analysis of scenarios of 
remembered specific examples.  

4) The fourth is the careful grouping of these 
commands by layer and decomposition to ensure 
that the example on-road driving tasks can be 
completely described, from the start to finish of a 
scenario, by the proper sequencing of these 
commands at the appropriate levels.   

This first step of the methodology sets the number of layers 
of agent control modules that will be required (step 2) to 
execute the task decomposition.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  Task decomposition decision tree for on-road driving 
example.  Shows the simpler commands that are used at each lower 
layer to represent the finer and finer resolutions of detail activities. 
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Step 2 – Agent Control Module Organization 
Once a set of commands is defined, we need an organization 
to execute them.  This step is identical to laying out an 
organizational structure of people in a business or the 
military.  You know what you want to do at various levels of 
detail – now you need an organization of intelligent agents to 
do it.  This structure is built from the bottom up.  The above 
detailed task decomposition will tell us how many layers of 
agents to have in our organization but not how many agents 
at a level or how they are grouped and coordinated.  This step 
starts at the bottom with an agent control module controlling 
each actuator in the system and then uses the knowledge of 
the task activities to understand which subordinate agents are 
grouped under which supervisor to best coordinate the task 
commands from step 1.   

Figure 4 illustrates how a grouping of agent control 
modules is assembled to accomplish the commands defined 
in step 1.  In this example, the lowest level servo control 
modules are represented by icons of the actuators being 
controlled.  The steering servo control module is represented  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  The hierarchical organization of agent control modules 

that are to execute the task command decomposition. 

by a steering wheel icon, the brake servo by a brake pedal 
icon, etc.  For this simple example, only four actuator control 
module icons are shown.  The brake, throttle, and 
transmission servo agent control modules are grouped under 
a single supervisor agent control module, which we will call 
the Speed Control Agent.  This supervisor agent control 
module will receive commands such as “AccelerateForward” 
(a more general form would be “Accelerate(magnitude, 
direction)) and have to coordinate its output commands to the 
brake, the throttle, and the transmission to accomplish them.  
By a similar analysis, the Steering Servo Agent is placed 
under a supervisor agent we call the Steering Control Agent 
Module. The Vehicle Trajectory Control Agent coordinates 
steering commands to the Steering Control Agent with the 
speed commands sent to the Speed Control Agent described 
above.  The command decomposition of the commands at 
levels above the Vehicle Trajectory Control Agent are shown 
being executed by a single agent at each layer since there are 
no more subordinate agent control modules to be coordinated 
in this simple example.  In a more realistic implementation, 
there would be additional agent control modules for ignition 
and engine starting, lights, turn signals, windshield 
wiper/washer, pan/tilt turrets that carry the sensor sets etc.  
This would be the step at which the organizational structure 
would be defined and laid out to properly coordinate these 
modules’ activities in accordance with the task 
decomposition descriptions from step 1.  
 

Step 3 – State-Table Definitions 
At this stage of the knowledge definition process we know 
the vocabulary and syntax of commands.  We also know 
what set of subcommands each command decomposes into, 
and where in the agent control hierarchy these  
decompositions take place.  Step 3 is to establish the rules 
that govern each command’s decomposition into its 
appropriate sequence of simpler output commands.  These 
rules are discovered by first listing the approximate sequence 
set of output commands that correspond to a particular input 
command to an agent 

Figure 5 illustrates this step with a state-table of the “Pass 
Veh(icle) In Front” command at the Driving Behaviors 
Agent Control Module.  This pass command is decomposed 
into five simpler output commands – “Follow Lane”, 
“Change to Left Lane”, “Follow Lane”, “Change to Right 
Lane”, and “Follow Lane” which are at the appropriate level 
of resolution for this layer in the agent hierarchy.  These 
output commands can be read in sequence down the right 
hand column of the state table.  The knowledge that is being 
added by this step 3 is to identify and name the situations 
(the left hand column of the state-table) that will transition 
the activity to each of these output commands.  These named 
situations are the branching conditions that complete the task 
decision tree representation. 
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Each of these newly named transition situations with their 
corresponding output command actions represent a single 
production rule that is represented as a single line in the 
state-table. The sequence that these lines (rules) are executed 
is ordered by the addition of a state variable (S1, S2, etc).  In 
the example in figure 5, the first rule shown in the state-table 
says that if this is a “New Plan” (input condition), then the 
output action side of the rule (the right hand side of the state-
table) sets the state to “S1” and outputs the command to 
“Follow Lane”.  As a result of executing this rule, this 
module is now in state “S1” and can only execute rules that 
include the state value of “S1” in their input condition.  The 
only rules that will be searched by this module are those in 
the state-table that clusters the rules relating to this particular 
input command (“PassVehInFront”).  In this state table, there 
is only one line (rule) that contains the state value “S1” as 
one of its input conditions.  Thus, only that line can match 
and it will not match until the situation 
“ConditionsGoodToPass” is also true.  When this situation 
occurs, this line will match (this rule will fire) and the 
module will go to state “S2” and output the command to 
“ChangeToLeftLane”.   This output command is sent to the 
subordinate agent control module (Elemental Maneuvers 
Control Module) where it becomes that module’s input 
command invoking a corresponding state-table to be 
evaluated as described here.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.  State-table for the Pass Vehicle In Front command.  

Each line is a rule relevant to this task.  The left column contains the 
state values used for ordering the execution and the situations that 
specify the branching conditions of the task decision tree.  The right 
column contains the output commands. 

 
Thus, the large set of rules governing the task decision tree 

execution is clustered both by the layer of resolution in the 
hierarchy and by the task context of the particular command 

at each layer so that only a very small number of rules have 
to be searched at any given time.  The execution order of 
these selected rules is controlled by the addition of state 
values.   It is important to note that the knowledge discovery, 
representation and organization have been completely driven 
by looking at the problem from the detailed task 
decomposition point of view. 

We will now make an important summary about the 
structuring of the knowledge base in these first three steps.  
These three steps were concerned with task knowledge 
expressed as the finer and finer branching of the decision 
process whereby the output action is sequenced in order to 
accomplish the assigned task.  This third step identifies 
arbitrarily named situations we create to encompass 
everything that the task depends upon at this point and at this 
level of resolution in its execution.  In this example, it was 
named “ConditionsGoodToPass”.   

These first three steps provide a complete listing of the 
task decomposition rules (i.e. these rules that determine when 
the system has to do something different in order maintain 
progress towards the goal.)  These rules have been grouped 
into layers of resolution, and within each layer, clustered into 
tables of rules relevant to a single input command.  Within 
each table they are ordered in their execution sequence by 
additional state values.  

We can think of these first three steps as identifying the 
procedural knowledge involved in the task decomposition 
process, i.e. defining all of the task branching conditions and 
resultant corrective output actions.   The next three steps are 
to identify all of the knowledge that is used to evaluate 
whether or not the branching conditions are true. 

 
Step 4 – Situation Dependencies on World 

States 
The world knowledge we want to identify and represent are 
those precursor world states that determine the task 
branching situation in the input side of the state-tables.  This 
is best illustrated with an example.  Figure 6 shows the 
“PassVehInFront” state-table.  As discussed above, the 
output command to “Change To Left Lane” is issued when 
the  “ConditionsGoodToPass” situation occurs.  We ask of 
our expert knowledge sources “what do we have to know 
about the state of the world at this time to say that the 
conditions are good to pass”.  Again, we use detailed 
scenarios and our knowledge sources to drill down to the 
parameters that go into this situation assessment.  We find 
that there is a surprisingly large set of things we want to 
know.  We list these items as they come up in scenarios and 
from manuals – “there cannot be an on-coming car within the 
passing distance”, “there must be a broken yellow lane 
marker on our side of center in the lane”, “there cannot be a 
railroad crossing within the passing distance”, “our own 
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Figure 6.  The identification of all of the precursor world states used to evaluate whether the situation “ConditionsGoodToPass” is true or not. 
 
 
vehicle is not being passed”, etc.  We will call these items 
world states since they seem to describe certain attributes 
about the world that are relevant to our present task.   

Once we have listed the world states relevant to the 
situation of “ConditionsGoodToPass”, we go over the list 
and see if groupings can be made.  In this case, we group 
some world states into a category we call “LegalToPass”, 
and others into additional categories we call 
“EnvironmentSafeToPass”, “SituationInFrontOkToPass”, 
“SituationInBackOkToPass”, “OncomingTrafficOKToPass”, 
etc.  These groupings are aggregate world states leading to 
the situation “ConditionsGoodToPass”.    For this situation to 
be true, all of the aggregate world states have to be true.  For 
each of the aggregate world states to be true, all of their 
component world states have to be true. 

The purpose of this step is to provide a listing of all of the 
parameters (in terms of named world states) that affect 
whether the task branching condition situation is true or not.  
We have not identified the sensitivity of the final situation to 
these precursor values or what functions are used to weight 
and evaluate the individual or combined truth of these 
precursor values.  The identification of these world states is 
independent of whatever technique is used to implement the 

control system.  Different implementation paradigms will 
affect the sensitivity, weighting, costing, and other evaluation 
functions.  For example, attributes like the level of driver 
aggressivity may affect the calculation of the length of the 
required passing zone that is a precursor to a number of 
individual world state calculations related to the  
“ConditionsGoodToPass”. 

How to best represent these functions and the variables 
they affect is still an area of research. 

 
Step 5 – World State Dependencies on Objects  
This step identifies all of the objects, their features and 
attributes that need to be measured by the sensing system to 
create the world model states described above.  Figure 7 
continues with the passing example.  As described above, 
one of the aggregate world model states was “LegalToPass” 
which was a grouping of a number of related world states 
which all deal with various legal restrictions on the passing 
operation.  One of these component world states that identify 
a legal restriction is “NoRailroadCrossingInPassZone”.   In 
this step, for each of the identified world states we wish to 
identify all of the objects, their features, and attributes 
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relevant to creating each named world state value. For the 
world state named “NoRailroadCrossingInPassZone”, these 
objects would include the railroad crossbuck emblem, 
crossing lights, crossing gate, crossing signs either alongside 
the road or painted on the road surface, the railroad tracks, 
and the train itself.  For each of these objects, we identify 
characteristic features or attributes that will be used for 
recognition of the object (e.g. the width and length of the 
crossbuck planks) and/or its state (e.g. flashing lights or a 
lowered gate as indicator of active warning state).    

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.  Example of the objects that are used to establish the 

“NoRailroadXinPassZone” world state. 
 
Step 4 has defined a surprising large set of named world 

states that are relevant to decisions that have to be made at 
each decision point in the task.  Now, in step 5 we find that 
each of these world states might result from a number of 
objects and each of these has multiple features and attributes 
required for their recognition.  We are starting to get an idea 
of the size of the knowledge base, and it is extremely large.  
The good news is that the RCS methodology’s approach to 
the grouping and representation of this knowledge base has 
created a manageable structuring.  We have a place to put 
each piece of knowledge and we use the task context to 
encode much of the relationship of the knowledge elements 
to each other. 

 
Step 6 – Measurement Resolutions 

In this last step, we want to define the resolution 
requirements for the measurement of objects for specific task 
decisions.  We do this by determining the expected distances 
to these objects during particular task activities.  In the case 
of the task activity of passing a vehicle in front, we have to 
be able to see objects such as the railroad crossbuck at the far 
limit of the expected passing zone.  For a vehicle passing on 
a 75kph road, the passing zone could easily be 200 m or 
more.  This means that the crossbuck, which is found at the 
railroad crossing itself, (whereas warning signs might be 300 
to a 300 m before the crossing) would have to be sensed and 
recognized by the sensory processing system at this distance.  

Since we know the size of the crossbuck plank elements, we 
can make an estimate of the absolute minimum sensory 
processing capability required to recognize it at this distance.  
This works out to sensors having a minimum resolution 
capability of .07 degrees.   

These specifications of the objects, attributes, features, and 
measurement resolutions have been derived from a detailed 
analysis of the world states required to evaluate a particular 
task branching condition situation.  This allows us to provide 
a very detailed specification as to what sensory processing is 
required in order to do specific tasks and subtasks.  This is 
important because one of the single biggest impediments to 
the implementation of autonomous driving control systems is 
the lack of capability of the sensory processing systems.  The 
identification of the objects of interest for particular task 
activities focuses the attention of the sensory processing on 
these objects that should be measured at the present state of 
the task, leading to very efficient and effective use of this 
very compute intensive resource.  It additionally helps to 
identify early on, during system design, which tasks are even 
feasible given the present state-of-the-art in sensory 
processing and points the direction to research areas to be 
developed for other capabilities to be realized. 

This also allows for the development of performance 
specifications in order to qualify systems for different driving 
capabilities (Barbera et al. 2003). 

 
Summary and Conclusions 

This paper has presented a description of the use of the task-
decomposition-oriented RCS methodology as an approach to 
acquiring and structuring the knowledge required for the 
implementation of real-time complex control tasks.   Some 
form of structuring is essential to this process because 
complex control tasks such as on-road autonomous driving 
are characterized by extremely large knowledge sets that 
would be impossible to deal with if not for some way to 
organize them.  The task decomposition approach to this 
structuring has given us a single consistent search process of 
well-defined sequential steps to both discover the relevant 
knowledge and to organize it.  The knowledge has been 
partitioned into two large elements:  

1) task knowledge (i.e. how to do things) concerned 
with the description and representation of the task 
decomposition through layers of agent control 
modules performing control decision branching 
decisions, encoded as rules in state-tables;  

2) world knowledge (i.e. what is the situation) 
concerned with the description and representation of 
all of the states of the world that are used to 
generate each of these condition branching 
situations in each state-table at each layer of the 
agent control hierarchy. 
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The representational format for all of the knowledge has 
been driven by a requirement to identify everything 
according to its relevance to task activities.   This has a very 
important impact on the implementation.  This organization 
of the task knowledge is in a form that can be directly 
implemented.  It has partitioned the knowledge by layers of 
resolution or abstraction so high level commands are 
clustered higher in the hierarchy and low level, equipment 
control knowledge is clustered at lower levels in the 
hierarchy.  It has threaded access to all of the knowledge 
from the task through world model states to objects and their 
attributes to be measured.  This is exactly the form the 
control system needs so it can access all of the information 
relevant to the present task activity as rapidly as possible. 

This representational format leaves the knowledge in a 
form that continues to be easily accessible by non-
programmer SMEs because all of the knowledge is indexed 
through the task behavior which is in exactly the same format 
that the SMEs remembered it for example scenario 
discussions.  This means that continual evolution and 
updating of the knowledge structure is possible by both the 
SMEs and the system designers, together or separately.  New 
task commands, new branching condition situations and 
output commands, new world states, additional objects, 
features and attributes are all easily added and the 
appropriate place to add them is indexed by the task 
decomposition itself. 

The research challenge is to develop a computer-based 
knowledge storage mechanism to capture the results of this 
process which up to now has been put into computers as a 
combination of drawings, word documents, spread sheets, 
and data bases.  The hope is that ontology tools and 
techniques will provide a more consistent single 
representational solution to capturing this knowledge and all 
of the implied relationships, especially to the task, in a more 
computer readable and processible form. 
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